
COT 6405 Introduction to Theory of
Algorithms

Topic 10. Linear Time Sorting

10/5/2016 2

How fast can we sort?

• The sorting algorithms we learned so far

– Insertion Sort, Merge Sort, Heap Sort, and
Quicksort

• How fast are they?

– Insertion sort O(𝑛2)

– Merge Sort O(nlgn)

– Heap Sort O(nlgn)

– Quicksort O(nlgn)

10/5/2016 3

Common property

• Use only comparisons between elements to
gain order information about an input
sequence

• Comparison sort

– Given two elements 𝑎𝑖 and 𝑎𝑗, we perform one of

the following tests to determine their relative
order

– 𝑎𝑖< 𝑎𝑗, 𝑎𝑖 ≤ 𝑎𝑗 , 𝑎𝑖 = 𝑎𝑗, 𝑎𝑖 ≥ 𝑎𝑗, 𝑎𝑖> 𝑎𝑗

10/5/2016 4

Decision trees

• We can view comparison sorts abstractly in
terms of decision trees

– A decision tree is a binary tree that represents the
comparisons between elements

– Each node on the tree is a comparison of i:j, i.e.,
𝑎𝑖 v.s. 𝑎𝑗

10/5/2016 5

Constructing the decision tree

• Given an input sequence {𝑎1, 𝑎2, 𝑎3}

10/5/2016 6

1:2

2:3 1:3

1:2:3 1:3 2:1:3

≤ >

2:3

≤ ≤> >

1:3:2 3:1:2 2:3:1 3:2:1

≤ > ≤ >

Decision tree for an input set of four
elements

10/5/2016 7

Given an input sequence {𝑎1, 𝑎2, 𝑎3, 𝑎4}

Decision trees (cont’d)

• What do the leaves represent?

– The leaf node in the tree indicates the sorted
ordering

• How many leaves must be there for an input
of size n

– Each of the n! permutations on n elements must
appear as one of the leaves of the decision tree

10/5/2016 8

Lemma

• Any binary tree of height h has ≤ 2h leaves

• In other words:

– i = number of leaves

– h = height

– Then, i ≤ 2h

• How to prove this?

9

Theorem 8.1

• Any comparison sort algorithm requires
Ω(𝑛𝑙𝑔𝑛) comparisons in the worst case

• How to prove?

– By proving that the height of the decision tree is
Ω(𝑛𝑙𝑔𝑛)

– What’s the # of leaves of a decision tree? l = ?

– What’s the maximum # of leaves of a general
binary tree? lmax = ?

10/5/2016 10

Proof

• l = n! and lmax = 2h

• Clearly, the # of leaves of a decision tree is less
than or equal to the maximum # of leaves in a
general binary tree

• So we have: n! ≤2h

• Taking logarithms: lg (n!) h

10/5/2016 11

Proof (cont’d)

• Stirling’s approximation tells us:

• Thus, h ≥ lg (n!)

10/5/2016 12

n

e

n
n

!

 nn

ennn

e

n
h

n

lg

lglg

lg

Sorting in linear time

• Counting sort

– No direct comparisons between elements!

– Depends on assumption about the numbers being
sorted

• We assume numbers are in the range [0.. k]

– The algorithm is NOT “in place”

• Input: A[1..n], where A[j] {0, 2, 3, …, k}

• Output: B[1..n], sorted

• Auxiliary counter storage: Array C[0..k]

• notice: A[], B[], and C[] not sorting in place

13

Counting sort

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization

3 C[i]= 0;

4 for j= 1 to A.length // counting each number

5 C[A[j]] += 1;

6 for i= 1 to k // aggregate counters

7 C[i] = C[i] + C[i-1];

8 for j= A.length downto 1 //move results

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

14

A counting sort example

10/5/2016 15

2 5 3 0 2 3 0 3A k = ?

Numbers are in the range [0.. 5]

0 0 0 0 0 0C

0 1 2 3 4 5

5

Filling the C array

10/5/2016
16

2 5 3 0 2 3 0 3A

0 0 0 0 0 0C

0 1 2 3 4 5

1 111 2 22 3

Filling the C array (Cont’d)

10/5/2016
17

2 0 2 3 0 1C

0 1 2 3 4 5

2 4 7 7 8

Sorting the numbers

10/5/2016
18

2 2 4 7 7 8C

0 1 2 3 4 5

2 5 3 0 2 3 0 3A

B

1 2 3 4 5 6 7 8

Sorting the numbers

10/5/2016
19

2 2 4 7 7 8C

0 1 2 3 4 5

2 5 3 0 2 3 0 3A

B

1 2 3 4 5 6 7 8

6

30

1

Sorting the numbers

10/5/2016
20

2 2 4 7 7 8C

0 1 2 3 4 5

2 5 3 0 2 3 0 3A

B

1 2 3 4 5 6 7 8

6

30

1

3

5

Counting sort
• Total time: O(n + k)

– Usually, k = O(n) k < c n

– Thus counting sort runs in O(n) time

• But sorting is (n lg n) ! Contradiction?

– No contradiction--this is not a comparison sort (in
fact, there are no comparisons at all!)

– Notice that this algorithm is stable

• The elements with the same value is in the same
order as the original

• index i < j, ai = aj new index i’ < j’

22

Stable sorting

Counting sort is a stable sort: it preserves the
input order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4

Counting Sort

• Why don’t we always use counting sort?

• Because it depends on range k of elements

• Could we use counting sort to sort 32 bit
integers? Why or why not?

• Answer: no, k too large (232 = 4,294,967,296)

– We need huge arrays, e.g., C[4,294,967,296]?

– k >> n O(n+k) = O(k)

24

Radix Sort

• Intuitively, we may sort on the most significant
digit (MSD), then the second msd, etc.

• Recursive MSD radix sort:

– Take the k-th most significant digit (MSD)

– Sort based on that digit, grouping same digit elements
into one bucket

– In each bucket, start with the next digit and sort
recursively

– Finally, concatenate the buckets in order

25

An example of a forward
recursive MSD radix sort

• Original sequence: 170, 045, 075, 090, 002,
024, 802, 066

• 1st pass- Sorting by most significant digit
(100’s):

– Zero bucket: 045, 075, 090, 002, 024, 066

– One bucket: 170

– Eight bucket: 802

10/5/2016 26

An example (cont’d)

• 2nd pass- Sorting by next most significant digit
(10’s), only needed by numbers in zero bucket:

– 045, 075, 090, 002, 024, 066

– Zero bucket: 002

– Twenties bucket: 024

– Forties bucket: 045

– Sixties bucket: 066

– Seventies bucket: 075

– Nineties bucket: 090

10/5/2016 27

An example (cont’d)

• 3rd pass- Sorting by least significant digit (1’s):
no need because there are no tens buckets
with more than one number.

• 4th pass- The sorted zero hundreds buckets
are concatenated and joined in sequence to
give 002, 024, 045, 066, 075, 090, 170, 802

10/5/2016 28

Most Significant Digit (MSD) Radix Sort

• Problem:

– lots of intermediate piles of cards to keep track of

• 10 buckets each round

– MSD sort does not necessarily preserve the
original order of duplicate keys

• Depending on how we sort the bucket

29

829
457
457

901 901

457
457

829

Least significant digit (LSD) Radix
Sort

• Key idea: sort the least significant digit first

• Assume we have d-digit numbers in A

RadixSort(A, d)

for i= 1 to d

StableSort(A) on digit i

30

Example: LSD Radix Sorting

31

Radix Sort
• Can we prove it works?

• Sketch of an inductive argument (induction on
the number of passes)

– Assume lower-order digits {j: j < i } are sorted

– Show that sorting next digit i leaves array correctly
sorted

• If two digits at position i are different, ordering
numbers by that digit is correct (lower-order digits are
irrelevant)

• If they are the same, numbers are already sorted on the
lower-order digits. Since we use a stable sort, the
numbers stay in the right order 32

Questions?

• Can we use any sorting algorithms instead of
stable sorting in LSD Radix sorting?

10/5/2016 33

Why stable sorting

• 657 658 469 595

• If the sorting algorithm is not stable

• First pass: 595 657 658 469

• Second pass: 658 657 469 595

• Third pass: 469 595 658 657

10/5/2016 34

Radix Sort

• What sort will we use to sort on digits?

• Counting sort is obvious choice:

– Sort n numbers on digits that range from 0..k

– Time: O(n + k)

• Each pass over n numbers with d digits takes
time O(n+k), so the total time O(dn+dk)

– When d is constant and k= O(n), takes O(n) time

35

How to break words into digits?

• We have n word

• Each word is of b bits

• We break each word into r-bit digits, d = b/r

• Using counting sort, k = 2r -1

• E.g., 32-bit word, we break into 8-bit digits
• d = 32/8 = 4, k = 28 -1 = 255

• T(n) = (d*(n+k)) = (b/r * (n + 2r))

10/5/2016 36

How to choose r?

37

Still in O(n)

Radix Sort Example
• Problem: sort 1 million 80-bit numbers

– Treat as four-digit radix 220 numbers

– r = 20 and d = 4

– We can sort in just four passes with radix sort!

– (b/r * (n + 2r)) = (bn/lgn) = (4,000,000)

• Compares well with typical O(n lg n) comparison sort

– Requires approximately O(n lg n) = O(20,000,000)
operations

– So why would we ever use anything but radix sort?

– Doesn’t sort in place (why?)

– Depends on implementation, e.g., quicksort uses cache
better

38

Summary: Radix Sort

• Assumption: input has d digits ranging from 0 to k

– Basic idea:
• Sort elements by digit starting with least significant

• Use a stable sort (like counting sort) for each stage

– Each pass over n numbers with d digits takes time O(n+k),
so total time O(dn+dk)
• When d is constant, and k=O(n), takes O(n) time

– Fast, stable, and Simple to code
• Doesn’t sort in place

• Depends on implementation, e.g., quicksort uses cache better

• Cannot easily sort floating point numbers

39

Bucket Sort

• Assumes the input is generated by a random
process that distributes elements uniformly
over [0, 1).

• Idea:
– Divide [0, 1) into n equal-sized buckets.

– Distribute the n input values into the buckets.

– Sort each bucket.

– Then go through buckets in order, listing elements
in each one.

40

Bucket Sort (cont’d)

• Input:
– A[1 . . n], where 0 ≤ A[i] < 1 for all i .

• Auxiliary array:
– B[0 . . n − 1] of linked lists, each list initially empty.

10/5/2016 41

Bucket sort Implementation

42

Easily compute the bucket index n · A[i]

Bucket sort with 10 buckets

43

Correctness

• Consider A[i] and A[j]

– Assume without loss of generality that A[i] ≤ A[j]

– Then, bucket index n · A[i] ≤ n · A[j]

• A[i] is placed into the same bucket as A[j] or
into a bucket with a lower index

– If same bucket, insertion sort fixes up

– If earlier bucket, concatenation of lists fixes up

44

Informal Analysis

• All lines of algorithm except insertion sorting take
(n) altogether

• Since the inputs are uniformly and independently
distributed over [0,1), we do not expect many
numbers to fall into each bucket

• Intuitively, if each bucket gets a constant number
of elements, it takes O(1) time to sort each bucket
⇒ O(n) sort time for all buckets.

45

Formal Analysis

• Define a random variable:

ni = the number of elements placed in bucket B[i]

• Because insertion sort runs in quadratic time,
bucket sort time is

46

Formal Analysis (Cont’d)

47

ni = the number of elements placed in bucket B[i]

ni = the number of elements placed in bucket B[i]

48

The Claim

49

(x1+x2+x3)(x1+x2+x3)

= x1
2 + x1x2+ x1x3

+ x2
2 + x1x2+ x2x3

+ x3
2 + x1x3+ x2x3

Analysis

50

Analysis (Cont’d)

51

Analysis conclusion

• This is a probabilistic analysis

– We used probability to analyze an algorithm
whose running time depends on the distribution
of inputs.

• With bucket sort, if the input isn’t drawn from
a uniform distribution on [0, 1), all bets are off

– Performance-wise, but the algorithm is still
correct

52

Bucket Sort Summary

• Assumption: input is n real #’s from [0, 1)

– We can map other number into the range of [0, 1)

• Basic idea:

– Create n linked lists (buckets) to divide interval
[0,1) into subintervals of size 1/n

– Add each input element to appropriate bucket
and sort buckets with insertion sort

• Uniform input distribution O(1) bucket size

– Therefore the expected total time is O(n)

53

Linear Sorting Common Mistakes

• Using counting sort, when memory is limited

– The size of k the size of C[0..k]

• Using bucket sort, when the input are not
uniform distributed

54

Linear-time Sorting Summary

• We have learned three linear-time sorting
algorithms

• Their assumptions on input

– Counting sort [0..k]

– Radix sort d digits

– Bucket sort uniform distribution [0, 1)

55

