COT 6405 Introduction to Theory of Algorithms

Topic 10. Linear Time Sorting

How fast can we sort?

- The sorting algorithms we learned so far

 Insertion Sort, Merge Sort, Heap Sort, and
 Quicksort
- How fast are they?
 - Insertion sort $O(n^2)$
 - Merge Sort O(nlgn)
 - Heap Sort O(nlgn)
 - Quicksort O(nlgn)

Common property

- Use only comparisons between elements to gain order information about an input sequence
- Comparison sort
 - Given two elements a_i and a_j , we perform one of the following tests to determine their relative order

$$-a_i < a_j, a_i \le a_j, a_i = a_j, a_i \ge a_j, a_i > a_j$$

Decision trees

- We can view comparison sorts abstractly in terms of decision trees
 - A decision tree is a binary tree that represents the comparisons between elements
 - Each node on the tree is a comparison of *i*:*j*, i.e., a_i v.s. a_j

Constructing the decision tree

• Given an input sequence $\{a_1, a_2, a_3\}$

Decision tree for an input set of four elements

Given an input sequence $\{a_1, a_2, a_3, a_4\}$

Decision trees (cont'd)

- What do the leaves represent?
 - The leaf node in the tree indicates the sorted ordering
- How many leaves must be there for an input of size n
 - Each of the n! permutations on n elements must appear as one of the leaves of the decision tree

Lemma

- Any binary tree of height h has $\leq 2^h$ leaves
- In other words:
 - *i* = number of leaves
 - -h = height
 - Then, $i \leq 2^h$
- How to prove this?

Theorem 8.1

- Any comparison sort algorithm requires $\Omega(nlgn)$ comparisons in the worst case
- How to prove?
 - By proving that the height of the decision tree is $\Omega(nlgn)$
 - What's the # of leaves of a decision tree? I = ?
 - What's the maximum # of leaves of a general binary tree? I_{max} = ?

Proof

- I = n! and $I_{max} = 2^{h}$
- Clearly, the # of leaves of a decision tree is less than or equal to the maximum # of leaves in a general binary tree
- So we have: $n! \leq 2^h$
- Taking logarithms: $\lg (n!) \le h$

Proof (cont'd)

• Stirling's approximation tells us:

$$n! > \left(\frac{n}{e}\right)^n$$

• Thus, $h \ge \lg(n!)$

$$h \ge \lg \left(\frac{n}{e}\right)^n$$
$$= n \lg n = n$$

$$= n \lg n - n \lg e$$
$$= \Omega(n \lg n)$$

Sorting in linear time

- Counting sort
 - No direct comparisons between elements!
 - Depends on assumption about the numbers being sorted
 - We assume numbers are in the range [0.. k]
 - The algorithm is NOT "in place"
 - Input: A[1..*n*], where A[j] \in {0, 2, 3, ..., k}
 - Output: B[1..*n*], sorted
 - Auxiliary counter storage: Array C[0..k]
 - notice: A[], B[], and C[] \rightarrow <u>not sorting in place</u>

Counting sort

1	CountingSort(A, B, k)
2	for $i = 0$ to $k / /$ counter initialization
3	C[i] = 0;
4	for j= 1 to A.length
5	C[A[j]] += 1;
6	for i= 1 to k // aggregate counters
7	C[i] = C[i] + C[i-1];
8	for j= A.length downto 1 //move results
9	B[C[A[j]]] = A[j];
10	C[A[j]] -= 1;

A counting sort example

Numbers are in the range [0.. 5]

CountingSort(A, B, k) 1 for i= 0 to k // counter initialization 2 C[i] = 0;3 4 for j=1 to A.length 5 C[A[j]] += 1;6 for i= 1 to k // aggregate counters 7 C[i] = C[i] + C[i-1];8 for j= A.length downto 1 //move results 9 B[C[A[j]]] = A[j];10 C[A[j]] -= 1;

C

Filling the C array

Filling the C array (Cont'd) 0 1 2 3 4 5 C 2 2 4 7 7 8

```
1 CountingSort(A, B, k)
2
     for i= 0 to k // counter initialization
3
          C[i] = 0;
4
     for j= 1 to A.length
5
          C[A[j]] += 1;
     for i= 1 to k // aggregate counters
6
7
           C[i] = C[i] + C[i-1];
     for j= A.length downto 1 //move results
8
9
          B[C[A[j]]] = A[j];
10
          C[A[j]] -= 1;
```

Sorting the numbers A B () C CountingSort(A, B, k)

for i= 0 to k // counter initialization C[i] = 0;for j=1 to A.length C[A[j]] += 1;for i= 1 to k // aggregate counters C[i] = C[i] + C[i-1];for j= A.length downto 1 //move results B[C[A[j]]] = A[j];C[A[j]] -= 1;

Sorting the numbers A B $\mathbf{0}$ () C

CountingSort(A, B, k) for i= 0 to k // counter initialization C[i] = 0;for j=1 to A.length C[A[j]] += 1;for i= 1 to k // aggregate counters C[i] = C[i] + C[i-1];for j= A.length downto 1 //move results B[C[A[j]]] = A[j];C[A[j]] -= 1;

10/5/2016

Sorting the numbers A B

() C

 $\mathbf{0}$

CountingSort(A, B, k) for i= 0 to k // counter initialization C[i] = 0;for j=1 to A.length C[A[j]] += 1;for i= 1 to k // aggregate counters C[i] = C[i] + C[i-1];for j= A.length downto 1 //move results B[C[A[j]]] = A[j];C[A[j]] -= 1;

10/5/2016

Counting sort

- Total time: O(n + k)
 - Usually, $k = O(n) \rightarrow k < c n$

- Thus counting sort runs in O(n) time

- But sorting is $\Omega(n \lg n)$! Contradiction?
 - No contradiction--this is not a comparison sort (in fact, there are *no* comparisons at all!)
 - Notice that this algorithm is stable
 - The elements with the same value is in the same order as the original
 - index i < j, $a_i = a_j \rightarrow new index i' < j'$

Stable sorting

Counting sort is a stable sort: it preserves the input order among equal elements.

Counting Sort

- Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large (2³² = 4,294,967,296)
 We need huge arrays, e.g., C[4,294,967,296]?
 k >> n → O(n+k) = O(k)

Radix Sort

- Intuitively, we may sort on the most significant digit (MSD), then the second msd, etc.
- Recursive MSD radix sort:
 - Take the k-th most significant digit (MSD)
 - Sort based on that digit, grouping same digit elements into one bucket
 - In each bucket, start with the next digit and sort recursively
 - Finally, concatenate the buckets in order

An example of a forward recursive MSD radix sort

- Original sequence: 170, 045, 075, 090, 002, 024, 802, 066
- 1st pass- Sorting by most significant digit (100's):
 - Zero bucket: 045, 075, 090, 002, 024, 066
 - One bucket: 170
 - Eight bucket: 802

An example (cont'd)

- 2nd pass- Sorting by next most significant digit (10's), only needed by numbers in zero bucket:
 - 045, 075, 090, 002, 024, 066
 - Zero bucket: 002
 - Twenties bucket: 024
 - Forties bucket: 045
 - Sixties bucket: 066
 - Seventies bucket: 075
 - Nineties bucket: 090

An example (cont'd)

- 3rd pass- Sorting by least significant digit (1's): no need because there are no tens buckets with more than one number.
- 4th pass- The sorted zero hundreds buckets are concatenated and joined in sequence to give 002, 024, 045, 066, 075, 090, 170, 802
 - Zero bucket: 002
 - Twenties bucket: 024
 - Forties bucket: 045
 - Sixties bucket: 066
 - Seventies bucket: 075
 - Nineties bucket: 090

- Zero bucket: 045, 075, 090, 002, 024, 066
- One bucket: 170
- Eight bucket: 802

Most Significant Digit (MSD) Radix Sort

- Problem:
 - lots of intermediate piles of cards to keep track of
 - 10 buckets each round
 - MSD sort does not necessarily preserve the original order of duplicate keys
 - Depending on how we sort the bucket

Least significant digit (LSD) Radix Sort

- Key idea: sort the least significant digit first
- Assume we have d-digit numbers in A

```
RadixSort(A, d)
for i= 1 to d
StableSort(A) on digit i
```

Example: LSD Radix Sorting

Radix Sort

- Can we prove it works?
- Sketch of an inductive argument (induction on the number of passes)
 - Assume lower-order digits {j: j < i } are sorted</p>
 - Show that sorting next digit i leaves array correctly sorted
 - If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits are irrelevant)
 - If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stay in the right order

Questions?

• Can we use any sorting algorithms instead of stable sorting in LSD Radix sorting?

Why stable sorting

- 6**5**7 6**5**8 469 595
- If the sorting algorithm is not stable
- First pass: 595 657 658 469
- Second pass: 658 657 469 595
- Third pass: 469 595 658 657

Radix Sort

- What sort will we use to sort on digits?
- <u>Counting sort</u> is obvious choice:
 - Sort *n* numbers on digits that range from 0..*k*

- Time: O(n + k)

 Each pass over n numbers with d digits takes time O(n+k), so the total time O(dn+dk)

- When d is constant and k = O(n), takes O(n) time

How to break words into digits?

- We have n word
- Each word is of b bits
- We break each word into r-bit digits, $d = \lceil b/r \rceil$
- Using counting sort, k = 2^r -1
- E.g., 32-bit word, we break into 8-bit digits
 d = [32/8] = 4, k = 2⁸ 1 = 255
- $T(n) = \Theta(d^{*}(n+k)) = \Theta(b/r^{*}(n+2^{r}))$

How to choose r?

How to choose r? Balance b/r and $n + 2^r$. Choosing $r \approx \lg n$ gives us $\Theta\left(\frac{b}{\lg n}(n+n)\right) = \Theta(bn/\lg n)$. Still in O(n)

- If we choose $r < \lg n$, then $b/r > b/\lg n$, and $n + 2^r$ term doesn't improve.
- If we choose $r > \lg n$, then $n + 2^r$ term gets big. Example: $r = 2\lg n \Rightarrow 2^r = 2^{2\lg n} = (2^{\lg n})^2 = n^2$.

Radix Sort Example

- Problem: sort 1 million 80-bit numbers
 - Treat as four-digit radix 2²⁰ numbers
 - r = 20 and d = 4
 - We can sort in just four passes with radix sort!
 - $\Theta(b/r * (n + 2^{r})) = \Theta(bn/lgn) = \Theta(4,000,000)$
- Compares well with typical O(n lg n) comparison sort
 - Requires approximately O(n lg n) = O(20,000,000)
 operations
 - So why would we ever use anything but radix sort?
 - Doesn't sort in place (why?)
 - Depends on implementation, e.g., quicksort uses cache better

Summary: Radix Sort

- Assumption: input has *d* digits ranging from 0 to *k*
 - Basic idea:
 - Sort elements by digit starting with least significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over n numbers with d digits takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant, and *k*=O(*n*), takes O(*n*) time
 - Fast, stable, and Simple to code
 - Doesn't sort in place
 - Depends on implementation, e.g., quicksort uses cache better
 - Cannot easily sort floating point numbers

Bucket Sort

- Assumes the input is generated by a random process that distributes elements uniformly over [0, 1).
- Idea:
 - Divide [0, 1) into n equal-sized buckets.
 - Distribute the *n* input values into the buckets.
 - Sort each bucket.
 - Then go through buckets in order, listing elements in each one.

Bucket Sort (cont'd)

• Input:

-A[1..n], where $0 \le A[i] < 1$ for all *i*.

• Auxiliary array:

 $-B[0 \dots n-1]$ of linked lists, each list initially empty.

Bucket sort Implementation

BUCKET-SORT(A, n)

for $i \leftarrow 1$ to n

do insert A[i] into list $B[\lfloor n \cdot A[i] \rfloor]$ for $i \leftarrow 0$ to n - 1

do sort list B[i] with insertion sort concatenate lists $B[0], B[1], \ldots, B[n-1]$ together in order return the concatenated lists

Easily compute the bucket index $\lfloor n \cdot A[i] \rfloor$

Bucket sort with 10 buckets

Correctness

- Consider A[i] and A[j]
 - Assume without loss of generality that $A[i] \le A[j]$
 - Then, bucket index $n \cdot A[i] \le n \cdot A[j]$
- A[i] is placed into the same bucket as A[j] or into a bucket with a lower index
 - If same bucket, insertion sort fixes up
 - If earlier bucket, concatenation of lists fixes up

Informal Analysis

- All lines of algorithm except insertion sorting take $\Theta(n)$ altogether
- Since the inputs are uniformly and independently distributed over [0,1), we do not expect many numbers to fall into each bucket
- Intuitively, if each bucket gets a constant number of elements, it takes O(1) time to sort each bucket
 ⇒ O(n) sort time for all buckets.

Formal Analysis

• Define a random variable:

n_i = the number of elements placed in bucket *B*[*i*]

 Because insertion sort runs in quadratic time, bucket sort time is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2).$$

Formal Analysis (Cont'd)

Take expectations of both sides:

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

= $\Theta(n) + \sum_{i=0}^{n-1} E[O(n_i^2)]$ (linearity of expectation)
= $\Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$ ($E[aX] = aE[X]$)

n_i = the number of elements placed in bucket B[i]

 n_i = the number of elements placed in bucket B[i]

Claim

 $E[n_i^2] = 2 - (1/n)$ for i = 0, ..., n - 1.

Proof of claim

Define indicator random variables:

•
$$X_{ij} = I\{A[j] \text{ falls in bucket } i\}$$

• Pr {A[j] falls in bucket i} = 1/n

•
$$n_i = \sum_{j=1}^n X_{ij}$$
 $X_{i,j} = I\{A[j] \text{ falls in bucket } i\}.$
= $\begin{bmatrix} 1 \text{ if } A[j] \text{ falls in bucket } i \\ 0 \text{ if } A[j] \text{ doesn't fall in bucket } i \end{bmatrix}$

The Claim

 $E[X_{ij}^{2}] = 0^{2} \cdot \Pr\{A[j] \text{ doesn't fall in bucket } i\} + 1^{2} \cdot \Pr\{A[j] \text{ falls in bucket } i\}$ $= 0 \cdot \left(1 - \frac{1}{n}\right) + 1 \cdot \frac{1}{n}$ $= \frac{1}{n}$

Analysis

 $E[X_{ij}X_{ik}]$ for $j \neq k$: Since $j \neq k$, X_{ij} and X_{ik} are independent random variables $\Rightarrow E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}]$

$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \frac{1}{n^2}$$

Therefore:

$$\mathbf{E}[n_i^2] = \sum_{j=1}^n \frac{1}{n} + 2\sum_{j=1}^{n-1} \sum_{k=j+1}^n \frac{1}{n^2}$$

Analysis (Cont'd)

$$= n \cdot \frac{1}{n} + 2\binom{n}{2} \frac{1}{n^2}$$
$$= 1 + 2 \cdot \frac{n(n-1)}{2} \cdot \frac{1}{n^2}$$
$$= 1 + \frac{n-1}{n}$$
$$= 1 + 1 - \frac{1}{n}$$
$$= 2 - \frac{1}{n}$$

■ (claim)

Therefore:

$$\begin{split} \mathrm{E}\left[T(n)\right] &= \Theta(n) + \sum_{i=0}^{n-1} O\left(2 - 1/n\right) \\ &= \Theta(n) + O\left(n\right) \\ &= \Theta(n) \end{split}$$

Analysis conclusion

- This is a probabilistic analysis
 - We used probability to analyze an algorithm whose running time depends on the distribution of inputs.
- With bucket sort, if the input isn't drawn from a uniform distribution on [0, 1), all bets are off
 - Performance-wise, but the algorithm is still correct

Bucket Sort Summary

- Assumption: input is n real #'s from [0, 1)
 - We can map other number into the range of [0, 1)
- Basic idea:
 - Create *n* linked lists (*buckets*) to divide interval
 [0,1) into subintervals of size 1/n
 - Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution → O(1) bucket size
 Therefore the expected total time is O(n)

Linear Sorting Common Mistakes

- Using counting sort, when memory is limited
 The size of k → the size of C[0..k]
- Using bucket sort, when the input are not uniform distributed

Linear-time Sorting Summary

- We have learned three linear-time sorting algorithms
- Their assumptions on input
 - Counting sort
 - Radix sort

- \rightarrow [0..k]
- \rightarrow d digits

Bucket sort

 \rightarrow uniform distribution [0, 1)